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ABSTRACT

In order to understand the influence of magnetic fields on the propagation properties of waves, as derived from
different local helioseismology techniques, forwardmodeling of waves is required. Such calculations need amodel in
magnetohydrostatic equilibrium as an initial atmosphere through which to propagate oscillations.We provide a method
to construct such a model in equilibrium for a wide range of parameters, for use in simulations of artificial helio-
seismologic data. The method combines the advantages of self-similar solutions and current-distributed models. A
set of models is developed by numerical integration of magnetohydrostatic equations from the subphotospheric to
chromospheric layers.

Subject headinggs: MHD — Sun: magnetic fields — sunspots

Online material: FITS files

1. INTRODUCTION

In recent years, local helioseismology has provided new insights
into the subphotospheric structure of quiet and active regions of
the Sun (Duvall et al. 1993; Kosovichev 1999, 2002; Kosovichev
et al. 2000; Zhao & Kosovichev 2003; Braun & Lindsey 2000).
However, the influence of magnetic fields on data interpretation
has not been fully explored. Theoretical efforts have been made
byCrouch&Cally (2003), Cally (2005, 2006), Schunker&Cally
(2006), Cally & Goossens (2007), and Schunker et al. (2008) to
include mode conversion and to model the ray paths of waves in
magnetized structures bymeans of analytical theory. These studies
confirm the potential importance for helioseismic measurements
of the so-called surface effects caused by the presence of a mag-
netic field.Amore complete understandingof the problemperhaps
could be reached via direct forward modeling of helioseismo-
logical data, since magnetic fields of arbitrary configuration can
be used. Several recent works report efforts in this direction, e.g.,
Gizon et al. (2006), Khomenko & Collados (2006), Parchevsky
& Kosovichev (2007), Shelyag et al. (2007), Hanasoge (2008),
and Cameron et al. (2008). In all these works (except Shelyag
et al. 2007), the authors apply a similar strategy. In particular, they
assume the existence of an equilibrium atmosphere containing a
magnetostatic structure whose properties may resemble to a larger
or lesser extent those of a sunspot or a magnetic flux tube. A
small-amplitude perturbation is then applied to the system in
order to studywave propagation,wavemode transformations, ampli-
tude and phase behavior of waves in a complex magnetic field
topology, etc.

The behavior of waves observed in active regions is very sen-
sitive to their magnetic field configuration. The photosphere and
low chromosphere are regions where a small change of parame-
ters, such as the size of the magnetic structure, or its temperature,
density, or magnetic field strength and inclination, may produce
significant changes in the resulting wave field. Simulations can
be of invaluable help in exploring different magnetostatic struc-
tures within a full parameter space, in order to understand the ef-

fects produced by the magnetic field on the measurable variables
used in local helioseismology.

This task requires a robust procedure to construct magneto-
static structures of desired properties. In this paper, we propose
such a strategy, and apply it to obtain thick structures as proto-
types for solar spots and pores. As a minimum requirement, the
model should fulfill the following conditions: (1) in the photo-
sphere the model should, on average, reproduce the properties of
a typical sunspot; (2) at the border, the model should smoothly
merge into a quiet-Sun nonmagnetic model atmosphere; (3) it
should be possible to choose the profile of thermodynamic pa-
rameters at the sunspot axis; (4)Wilson depression should be taken
into account; (5)magnetic field strength, inclination, and the radius
of the structure should be adjustable; and (6) the model should be
easily extensible into an arbitrary depth below the photosphere.

There is a vast literature of work on magnetostatic models.
Leaving aside small-scale flux tubemodels, those for thick struc-
tures can be divided into those possessing a current sheet (e.g.,
Pizzo 1990), with a sharp magnetic-nonmagnetic interface, and
thosewith distributed currents (e.g., Pizzo 1986), showing a smooth
transition. Without discussing the advantages and disadvantages
of the both, we will proceed here with current-distributed models.

Available current-distributed models generally apply one of two
different philosophies. In the first, the magnetic structure is pre-
scribed and the distribution of thermodynamic variables is looked
for to be in agreement with this structure. This is the class of self-
similar models, as proposed by Schlüter & Temesváry (1958) and
then extended by, e.g., Low (1975, 1980). In the second set of
models, the pressure distribution is prescribed as the boundary
condition at the axis of the magnetic structure and in the distant
nonmagnetic atmosphere. Both pressure and magnetic field are
iteratively changed in the remaining points to reach an equilibrium
situation (Pizzo 1986).

From the point of view of the requirements given above, both
classes of models have advantages and disadvantages. The ap-
proach of Pizzo (1986) is more fruitful in the photosphere, since
the pressure distributions of the field-free and magnetized atmo-
spheres can be taken from observations and are relatively well
known. However, for deep subphotospheric layers, models that
can be taken as boundary conditions are scarce. More precisely,
the quiet-Sun nonmagnetic pressure stratification can be taken
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from helioseismological data, for example, from the standard solar
model of Christensen-Dalsgaard et al. (1996). As for the sunspot
axis, no precise data are available (see, however, Zhao et al. 2001;
Kosovichev 2002;Couvidat et al. 2006). Themodel of Pizzo (1986)
turns out to be very sensitive to the pressure deficit inside sun-
spots, and the method in general has poor convergence if the sim-
ulation box is too deep, and is very sensitive to the estimate of the
pressure distribution at the sunspot axis. This makes the method
unsuitable for our purposes.

On the other hand, the procedure proposed by Low (1980)
works better in deep layers, where the gas pressure dominates over
the magnetic pressure. In the photosphere, where the plasma be-
comes magnetically dominated, negative pressures are frequently
obtained from the method of Low (1980). It is complicated to
guess the parameters of the magnetic field configuration in order
to avoid this problem. At the same time, if one wishes to extend
the models into the photosphere and higher layers, the magnetic
field strength is limited to rather low flux-tube-like values, not ap-
propriate for sunspots (see Hanasoge 2008; Cameron et al. 2008).

In this paper, we take advantage of both Pizzo-like and Low-like
approaches, and propose a method to calculate the magnetostatic
equilibrium of a thick sunspot-like structure with the properties
defined above. Below we describe the equations that allow us to
successfully merge results from both methods, and show exam-
ples of magnetohydrostatic (MHS) solutions for a wide range of
parameters. Conclusions are given in the last section.

2. METHOD

We solve the equilibrium force balance equation together with
divergence-free condition for the magnetic field:

�:P þ �gggþ 1

4�
(: < B) < B ¼ 0;

:B ¼0: ð1Þ

Following Pizzo (1986), the equations are solved in cylindrical
coordinates (r; �; z), and axial symmetry is assumed (i.e., all var-
iables are independent of �). Under these conditions the mag-
netic field vector can be conveniently written in terms of the field
line constant u,

B ¼ � 1

r

@u

@z
;
G(u)

r
;
1
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@u

@r

� �
; ð2Þ

whereG(u) is a function related to the twist component of the field.
The variable u is used both in Pizzo (1986) and Low (1980). The
difference is that in Low (1980) the analytical expression for u is
postulated, while in Pizzo (1986) the shape of the field lines u is
obtained by iteratively solving the equation of the force balance
for given boundary conditions in agreement with some pressure
distribution. Except for constants, the functional form of u used
by Pizzo (1986) as an initial condition at the lower boundary of
the computational domain is exactly the same as that postulated
by Low (1980). Thus, both models can be joined in a natural
way, assuming that the deep layers of the model sunspot can be
approximated by the self-similar solution and the upper layers by
the solution of Pizzo.

In Low (1980), following the spirit of self-similar solutions, the
field-line constant u is expressed as a function of one variable, ’:

u(r; z) ¼ u(’); ’ ¼ r 2F(z);

F(z) ¼ (z2 þ a2)�1; ð3Þ

where a is a constant parameter. The field is untwisted, and the
azimuthal component, B�, is zero. This is equivalent to setting

G(u) ¼ 0 in equation (2). Using the above expression, equation (2)
can be rewritten as a function of ’:

B ¼ �r
dF(z)

dz

du

d’
; 0; 2F(z)

du

d’

� �
: ð4Þ

Following Low, the function du/d’ has to satisfy certain normal-
izations in order to fulfill the force balance equation. This leads
to the expression

du

d’
¼ BL

0 h
2 exp(��’); ð5Þ

where BL
0 is a parameter that controls the magnetic field strength,

and h is a suitable length scale (although note that Low uses di-
mensionless variables, while here we choose to use physical
dimensions for all the variables).
Introducing equation (5) into equation (4), the horizontal and

vertical components of the magnetic field vector in the Low’s
model can be written as

Br(r; z) ¼ 2BL
0

(z� zd)rh
2

(z� zd)
2 þ a2

� �2 exp
��r 2
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� �
; ð6Þ

Bz(r; z)¼ 2BL
0

h2
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� �
: ð7Þ

The parameter zd is a reference height, where the magnetic field
is purely vertical. Equation (7) is directly comparable to the one
used in Pizzo as a boundary condition at the bottom boundary of
the domain:

Bz(r; z0) ¼ BP
0 exp �r 2=r 2e

� �
: ð8Þ

Comparing these two expressions, we see that if the two models
are to be joined at some arbitrary height z ¼ z0, the parameters of
the models should be related as

BP
0 ¼ BL

0

2h2

(z0 � zd)
2 þ a2

; ð9Þ

r 2e ¼ (z0 � zd)
2 þ a2

� �
=�: ð10Þ

Keeping this inmind, themodel can be constructed following the
steps described below.

2.1. Step 1: Generation of a Self-Similar Solution
in Deep Layers

In deep subphotospheric layers, we calculate a self-similar so-
lution for B after equations (6) and (7). The pressure and density
distributions with height and radius are found from analytical
expressions (eqs. [50] and [51] in Low 1980). As a boundary
condition at the right boundary (field-free atmosphere), we take
the pressure and density frommodel S of Christensen-Dalsgaard
et al. (1996). The choice of field-free pressure and density is
rather arbitrary, however. Because of azimuthal symmetry, the left
boundary of the domain corresponds to r ¼ 0, i.e., the axis of the
magnetic structure. The lower boundary is taken exactly at height
zd , where Br(r; zd) ¼ 0 at all distances r. In all the cases presented
here, zd ¼ �10 Mm, and the origin for the z-axis is taken at the
base of the photosphere. Given pressure and density, the temper-
ature distribution in the model sunspot can be calculated using
the equation of state either in tabular form or for an ideal gas. The
parameters �, a, and BL

0 can be chosen freely. An additional free
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parameter is the height, z0, that limits the upper boundary of the
self-similar model. Depending on the height of the upper bound-
ary, BL

0 can be made larger or smaller to prevent giving negative
gas pressures.

The basic topology of the solution is given in Figure 1 for the
parameters indicated in the figure caption. These parameters are
chosen on purpose to demonstrate that the method is able to deal
with large field strengths. The sunspot radius at the bottom bound-
ary is roughly defined by a��1=2 (Low 1980). The inclination of
the field at the top boundary changes with the distance from the
axis, from 0 to about 70� at the rightmost point of the domain. The
magnetic field is concentrated inside the first 15Mmfrom the axis,
being weak in the rest of the domain. The field strength drops at
the axis from12 kG at z ¼ �10Mm to 4 kG at z ¼ �1Mmdepth.
The gas pressure is always above the magnetic pressure.

The Wilson depression is rather weak, and the model sunspot
is almost thermally plane-parallel in deep layers, as follows from
the distribution of the acoustic speed, cs. We do not have criteria
to judge how realistic this description is. Data on the subphoto-
spheric distribution of the sound speed in sunspots are scarce and
uncertain (see, however, time-distance analysis results by Zhao
et al. 2001; Kosovichev 2002; Couvidat et al. 2006).

2.2. Step 2: Generation of a Potential Solution
in the Overlying Atmosphere

Given the values of �, a, BL
0, zd , and z0, we calculate the initial

parameters of the Pizzo model from equations (9) and (10). This

gives us BP
0 ¼ 4 kG and re ¼ 9:4 Mm.We follow the same steps

as in the original paper of Pizzo (1986), and start by computing
the potential solution,

@ 2u

@r 2
� 1

r

@u

@r
þ @ 2u

@z2
¼ 0: ð11Þ

The bottomboundary of the domain coincideswith the top bound-
ary from the previous step and is located at z ¼ �1Mm, below the
photosphere. The field-line constant u at the bottom boundary can
be approximated by

u ¼ r 2e B
P
0 1� exp �r 2=r 2e

� �� �
=2: ð12Þ

At the left (sunspot axis) and top boundaries u ¼ 0 (vertical field),
and u approaches a constant value at the right boundary (hori-
zontal field). With this set of boundary conditions, the boundary
value problem posed by equation (11) can be solved by standard
methods.

2.3. Step 3: Generation of a Magnetostatic Solution
in the Overlying Atmosphere

The potential solution obtained in step 2 is used as initial guess
in the integration of the complete force balance equation along
the magnetic field lines (eq. [4] in the paper by Pizzo):

@ 2u

@r 2
� 1

r

@u

@r
þ @ 2u

@z2
¼�4�r 2

@P(u; z)

@u
: ð13Þ

Fig. 1.—Topology of the Low solution with a ¼ 2h, h ¼ 3 Mm, � ¼ 1:3, B0 ¼ 25;000 G, and z0 ¼ �1 Mm. Top: Magnetic field strength; middle: acoustic speed;
bottom: log of the Alfvén speed.White lines are magnetic field lines. Black lines with labels are the contours of the ratio of the sound speed and the Alfvén speed squared,
c2s /v

2
A.
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In order to start iterations we need an approximation for the
distribution of pressure along themagnetic field lines,P(u; z). Fol-
lowing Pizzo (1986) andLow (1975), we take this to be of the form

P(u; z) ¼ P0(u) exp �
Z z

0

dz0

h(u; z0)

� �
; ð14Þ

where P0(u) is the gas pressure along the bottom boundary. The
function h(u; z) is a scale height. For a complete description of
the problem, the representative pressure distributions along the

axis and in the field-free quiet atmosphere need to be specified. As
field-free atmosphere, we use model S of Christensen-Dalsgaard
et al. (1996) smoothly joined to the VAL-C model of the solar
chromosphere (Vernazza et al. 1981). At the axis, we use theAvrett
(1981) model in the upper layers. In deep layers, we adopt a model
by Kosovichev et al. (2000) obtained from helioseismic inversions
of the sound speed beneath sunspots. Thismodel already takes into
account the Wilson depression, which is about 450 km. However,
the completemodel can be shifted up or down on the axis, if smaller
or larger values of theWilson depression are required. Themodel

Fig. 2.—Topology of the Pizzo solution with BP
0 ¼ 4 kG and re ¼ 9:4 Mm. Top: Magnetic field strength;middle: acoustic speed; bottom: log of the Alfvén speed.White

lines are magnetic field lines. White lines with labels are the contours of c2s /v
2
A. Note that for better visualization, the vertical axis has been expanded.

Fig. 3.—Topology of the magnetic field lines before iterations (dashed lines) and after a new equilibrium is reached (solid lines).
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has a cool region just below the surface and a hot one below,
down to about �10 Mm. For our purposes we take this model
starting from �1 Mm depth, and thus the hot layer is not taken
into account. Once these models are specified, we calculate a
smooth transition between them for the gas pressure P(u; z) and
scale height h(u; z) distributions, as given by Pizzo (1986) in his
equations (13), (17), and (18). Then, equation (13) is iterated until
a convergence criterion is reached.

Themodel sunspot for the parameters given above is shown in
Figure 2. The magnetic field on the axis drops from 4 kG at
z ¼ �1Mm to about 2 kG at 2 Mm, which is a rather large value
at this height. Due to such a large field strength, the Alfvén speed
exceeds 104 km s�1 in the upper layers. The image of the sound
speed shows the presence of theWilson depression around z ¼ 0,
i.e., the temperature at the sunspot axis is smaller than in the out-
side atmosphere at a given height. Note that at higher layers, the
effect is the opposite, and the temperature inside the sunspot is
larger. This effect is due to the initial distribution in the model
atmospheres taken as boundary conditions. The field lines are
more inclined compared to the Low solution in Figure 1.

2.4. Step 4: Concatenating the Solutions

Both solutions obtained in step 1 and step 3 are in MHS equi-
librium. In order to construct the complete model from deep to

high layers, one has to put one model on top of the other. How-
ever, despite the fact that Bz at the bottom boundary of the Pizzo
model is calculated to be in agreement with Bz at the top bound-
ary of the Low model, there is a discontinuity in the horizontal
component of the magnetic field. This discontinuity can be ap-
preciated in Figure 3, where the dashed field lines show the two
models concatenated as they are. The reason for this discontinuity
is twofold. On the one hand, the physics of the solution changes
abruptly from onemodel to the other, thus changing the gradients
of the magnetic field, gas pressure, etc. On the other hand, the
boundary condition for the field line constant u is not the same in
the both models. In the Low model, there is neither the need nor
the possibility to set conditions on u. The inclination of the mag-
netic field lines at the right boundary is a consequence of the
parameters of the model, and they should not necessarily be
horizontal. Contrarily, in the case of the Pizzo model, we impose
a horizontal magnetic field at the right boundary. The depen-
dence of Bz on r given by equation (8) defines the vertical mag-
netic field strength but does not put constraints on the horizontal
field component.

Thus, in order to obtain a smooth solution everywhere in the
domain, we repeat the step 3 calculations for the complete model
sunspot. We take the pressure distributions at the axis and in the
field-free outside atmosphere from the joint model at all heights.

Fig. 4.—Topology of the complete solution with BL
0 ¼ 25;000, a ¼ 2h, h ¼ 3 Mm, and � ¼ 1:3 (BP

0 ¼ 4 kG and re ¼ 9:4 Mm). Top: Magnetic field strength;
middle: acoustic speed; bottom: log of the Alfvén speed. White lines are magnetic field lines. White lines with labels are the contours of c2

s
/v2A.
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The boundary conditions for u are the same as in the Pizzo model.
The distribution of u at the bottomboundary is taken from theLow
model. Thenwe repeat the solution of equation (13). The resulting
topology of the magnetic field lines is plotted in Figure 3 by solid
lines. The field lines in the final solution are more horizontal in low
layers, while they are more vertical in the upper layers.

Figure 4 gives the distribution of some parameters in the com-
plete model sunspot, at all layers. We can see that the last itera-
tion has redistributed all the parameters from the individual Low
and Pizzo parts of the solution. In particular, the magnetic field
gradient at the axis is now steeper, and the field strength in high

layers becomes lower. The field is in general more inclined, being
horizontal at the right-hand domain boundary, consistent with our
imposed boundary condition there. The gas pressure is modified
accordingly to maintain the new force balance.
Figure 5 gives a more detailed view of the model sunspot so-

lution. It shows the distribution with radius (left panels) and with
depth (right panels) of some parameters of the sunspot atmo-
sphere. The field strength decreases rapidly with height at an av-
erage rate of about 1 G km�1 at the axis. The magnitude of the
gradient decreases with height andwith distance to the axis. These
gradients are in agreement with photospheric spectropolarimetric

Fig. 5.—Distribution with radial distance (left panels) and with depth (right panels) of the magnetic field strength, pressure, ratio c2s /v
2
A, and the magnetic field

inclination for the sunspot with BL
0 ¼ 25;000, a ¼ 2h, h ¼ 3 Mm, and � ¼ 1:3 (corresponding to BP

0 ¼ 4 kG and re ¼ 9:4 Mm at z ¼ �1 Mm). The radial pressure
distributions are normalized to their values at the right boundary.
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observations (Solanki 2003). Themagnitude of the pressure deficit
inside the model sunspot decreases with depth, almost disappear-
ing at about�2Mmdepth, in accordance with our assumption of
self-similarity of the MHS solution at larger depths.

As can be seen from the radial pressure distribution, there is a
pressure excess observed at larger heights in the chromosphere at
some distance from the axis. This pressure excess would produce
a bright ring in the emergent intensity from the model sunspot,
and it is present in the original model of Pizzo (1986). As shown
in that work, the bright ring can be removed by an improved
initial estimate of the P(u; z) distribution. It is unimportant for the
purpose of the present work, since we only need an approximate
agreement between the average properties of the MHS solution
and the observed properties of sunspots. Themagnetic field lines
of the model sunspot are inclined less than 30� within the first
10 Mm from the axis, which can be considered as the umbra.
Because of the boundary condition, the inclination changes grad-
ually, becoming 90� at the edge of the model, where the magnetic
field is already very weak. The ratio between the sound speed and
the Alfvén speed squared (which gives the measure of the gas to
magnetic pressure) changes by orders of magnitude, from 106 at
z ¼ �10Mm to 10�6 at z ¼2Mm. Note that despite this, there is
no problem with the convergence of the solution.

In the next section, we give more examples of MHS solutions,
comparing models obtained with various sets of parameters. In
the examples below we discuss models calculated in a complete
domain from z ¼ �10 to z ¼ 2 Mm.

3. EXAMPLES

Dependence on magnetic field strength.—Figure 6 shows the
magnetic field topology of modelswith different values of themag-
netic field strength (parameter BL

0), all the other parameters being
exactly the same. As can be seen by comparing the different curves
on the figures, the resulting gas pressure stratifications only differ
in the highest layers by the amount of the pressure deficit. The
magnetic field topology is indistinguishable in all the cases. This
is due to two effects. On the one hand, the self-similar solution in
the bottom part of the domain scales with magnetic field strength,
i.e., the field line topology does not depend on BL

0. On the other
hand, the Pizzo solution in the upper part is close to the potential
imposed by the solution in the bottom part. The potential solution
also scales with the magnetic field strength and is independent of
thermodynamic properties. These two effects lead the magnetic
topology of the final solution in the complete domain to be inde-
pendent of BL

0 . This is a useful property from the point of view of
helioseismology simulations. Using a set of models with different
magnetic field strength, but otherwise the same, the effects of the
magnetic field strength on waves can be checked independently
of the effects of the magnetic field inclination.

It should be noted that the above property originates only from
the particular choice of the parameters a and �. This choice pro-
duces re large enough that the final solution in the upper part of
the domain approaches the potential and becomes almost indepen-
dent of the pressure distribution P(u; z) (Pizzo 1986).

Fig. 6.—Top panels: Height dependence of the magnetic field and pressure at the axis for the models with a ¼ 2h, h ¼ 3Mm, � ¼ 1:3, and BL
0 ¼ 10;000 G (red line),

16,000 G (green line), 25,000 G (blue line), and 40,000 G (magenta line). Bottom panel: Topology of the magnetic field lines for the same solutions (same color-coding).
Contours of the magnetic field strength of B ¼ 1000 G are shown by dotted lines for each case. Horizontal solid lines mark the levels of cs ¼ vA.
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Dependence on a and �.—Figure 7 shows the magnetic field
topology of themodels calculated with different values of the pa-
rameter � (eqs. [6] and [7]), the rest of the parameters being the
same. Note that, according to the above equations, the inclination
of the magnetic field is independent of � in the Low model in the
bottom part of the domain. However, the initial radius of the
structure in the Pizzo part of the solution, re (eq. [10]), depends
on �, thus changing the inclination of the magnetic field lines in
the upper part of the atmosphere. The final iteration performed in
step 4 takes that into account, making the solution in the complete
domain dependent on �.

The change of � produces two effects. By increasing �, we de-
crease the magnetic field strength by a smaller amount than by
varying BL

0, as in the previous example. At the same time, increas-
ing � produces an increase of the inclination of the magnetic field
lines in the solution in the complete domain. The difference in the
inclination is more pronounced in the deep layers of the model.
Themagnetic field topology of the solutions is different. The gra-
dient of the magnetic field at the axis is slightly larger for larger
values of � in the subphotospheric part of the model. Again, this
difference is produced after the final iteration in step 4, since the
Bz(r ¼ 0) given by equation (7) of the Low part of the solution is
independent of �. The pressure distribution at the axis and the
amount of the pressure deficit are not very different between the
given models.

Varying the parameter a produces similar effects. The difference
is that by varying a, we change mostly the curvature of the mag-
netic field lines and the radius of the structure, without much
affecting the magnetic field strength.

Dependence on z0.—Another parameter introduced in ourmod-
eling is the height where both solutions merge, z0. Figure 8 shows
the topology of the magnetic field lines and the pressure and den-
sity distributions with height at the axis for three models with
different values of z0. In this example we take different values
of a and � in order to produce a structure with a smaller radius. In
this way, we show that the procedure is robust and can produce
magnetic structures with very different properties.
The magnetic field strength at the axis is almost independent

of the choice of z0. The amount of the pressure deficit at the near-
surface layers increases with decreasing z0 from �1 to �3 Mm,
extending to larger depths. Note, however, that we cannot shift the
level of z0 much deeper than�3 Mm, due to a poor convergence
of the solution. Despite the fact that the magnetic field strength is
nearly the same, the position of the � ¼ 1 level is different in all
the solutions due to the different amount of the pressure deficit.
The inclination of themagnetic field lines is similar in the central

part of the model sunspots in the three solutions. At the periphery,
especially at larger depths, the field lines are more inclined with
decreasing z0. Thus, the field is more concentrated toward the
central part, and the effective radius of the structure is smaller.
All models presented in this section are available as FITS files
accompanying the electronic edition of this article.

4. CONCLUSIONS

In this study, we propose a method to construct a magnetostatic
structurewith the properties and size of a typical sunspot, from the
deep interior to the solar surface. Previously published methods
for constructing such amodel have failed due to a poor knowledge

Fig. 7.—Top panels: Height dependence of the magnetic field and pressure at the axis for the models with a ¼ 2h, h ¼ 3Mm, BL
0 ¼ 25;000, and � ¼ 1:3 (red line),

2.5 (green line), and 3.5 (blue line). Bottom panel: Topology of the magnetic field lines for the same solutions (same color coding). Contours of the magnetic field strength
of B ¼ 1000 G are shown by dotted lines for each case. Horizontal solid lines mark the levels of cs ¼ vA.
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of the thermodynamic and magnetic parameters of sunspots in
subphotospheric layers. We make use of self-similar models in
deep layers and show that such models can naturally merge with
models inwhich the pressure distribution is prescribed on the axis,
as well as the field-free atmosphere, allowing for a more realistic
description of the atmospheric layers of sunspots. This procedure
shows a rather good convergence and stability. By changing the
parameters of the solution, a set of models with the desired prop-
erties can be produced. We suggest that these models could be
used in artificial helioseismology data simulations, among other

applications. Given a set of models, a parametric study can be
done investigating the influence of the topology and strength of
themagnetic field of sunspots on the parameters inferred by local
helioseismology measurements in solar active regions.

This research has been funded by the Spanish Ministerio de
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