

Rapporto sull'attività di osservazione dell'anno solare 2016

1) Osservazioni in luce bianca (continuo)

Dal 1 Gennaio al 31 Dicembre dell'anno 2016 sono state eseguite 295 osservazioni della fotosfera, (310 nel 2015). La media totale di osservazioni dal 2009 al 2015 rimane quindi di 295 osservazioni per anno, valore di tutto rispetto anche se rapportato a quelli dei maggiori Osservatori Solari mondiali. Sono stati osservati e classificati (secondo il metodo di Zurigo) 206 gruppi (contro i 312 del 2015) e conteggiate complessivamente 5298 macchie (10880 nel 2015). Il mese con il maggior numero di macchie osservate è stato Settembre, con 689 e quello con il minor numero Novembre con 151. Però Novembre è stato anche il mese dell'anno con il minor numero di osservazioni. Il numero di gruppi osservati quest'anno è stato notevolmente inferiore a quello dello scorso anno e di quello ancora precedente, così come il numero di macchie. Questo dimostra come l'attività solare nel 2016 si sia avviata decisamente verso il prossimo minimo di attività, previsto per la fine del 2019, ma che potrebbe anche anticipare di qualche tempo. Da notare la presenza, nel 2016, di 28 giorni di mancanza completa di macchie sul disco. Il mese con il minor numero di osservazioni nel 2016 è stato Novembre (17) e quello con il maggior numero Luglio (30).

Per ogni giorno di osservazione è stato prodotto un disegno della fotosfera, eseguito dal Direttore dell'Osservatorio.

Tutti i disegni relativi alle osservazioni ufficiali sono stati organizzati in due archivi, uno cartaceo e l'altro in formato elettronico; ulteriori disegni prodotti dagli Studenti appartenenti ai gruppi di osservazione costituiti nell'ambito del Progetto Astro.Net sono anch'essi conservati sia in forma cartacea che elettronica in archivi personali per ogni gruppo.

Riguardo alla pubblicazione dei disegni del Direttore e degli Studenti sul sito dell'Istituto, faccio notare come dal 21 Gennaio in poi è stato impossibile aggiornare le pubblicazioni a causa di problemi tecnico-gestionali relativi al rinnovamento del sito istituzionale, per i quali a tutt'oggi non è stata ancora trovata, o non si è voluta trovare, una soluzione. Pertanto i soli disegni eseguiti dal Direttore e osservatore ufficiale sono da allora e a tutt'oggi pubblicati sul sito Solarspots.net, di proprietà dello scrivente dove è contenuto l'archivio di tutte le sue osservazioni. La pubblicazione dei disegni degli Studenti è stata limitata a quelli relativi alle osservazioni in Hα. Questa situazione, peraltro spiacevole ma non dipendente dallo scrivente, perdurerà fintanto che non verrà messa a punto le nuova versione del sito relativa all'Osservatorio Solare.

In appendice sono riportati tutti i numeri di Wolf emisferici non ridotti calcolati nel 2016 nel nostro Osservatorio, i report mensili di osservazione dell'osservatore ufficiale, i Sunspot Bullettin mensili del SIDC/SILSO e gli ISSN (International SunSpots Numbers) ufficiali normalizzati per i primi tre

trimestri del 2016, gli unici finora pubblicati dal SIDC/SILSO. Quest'anno in appendice sono stati introdotti anche gli indici DST giornalieri calcolati dal WDC di Kyoto, come risultato del costante monitoraggio dello Space Weather, una delle attività fondamentali del nostro Osservatorio, oltre alla osservazioni in fotosfera e cromosfera.

Nel seguito sono invece riportati i risultati delle osservazioni. Il numero di Wolf medio non ridotto per quest'anno, confrontato con quello dello scorso anno, 46 contro 81, conferma la notevole minore attività fotosferica rispetto al 2015.

Tabella 1.

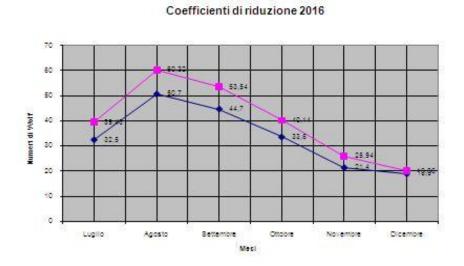
Numeri di Wolf medi mensili calcolati in Istituto e rapportati agli International Sunpots Numbers (provvisori per il secondo semestre) elaborati dal SIDC/SILSO di Bruxelles. Nella prima colonna sono indicati i mesi dell'anno, nella seconda i numeri dell'Istituto (Risis), nella terza quelli del SIDC/SILSO (Rsidc), nell'ultima i rapporti (Rs/Ri) tra gli Rsidc e gli Risis. Completano la tabella i valori medi ed il coefficiente di riduzione Kc.

Mese	Risis	Rsidc	Rs/Ri
Gennaio	60.19	56.60	0.940
Febbraio	68.35	57.20	0.836
Marzo	57.07	54.90	0.962
Aprile	48.77	38.00	0.779
Maggio	55.73	52.10	0.935
Giugno	24.21	20.90	0.863
Luglio	39.43	32.50	0.824
Agosto	60.32	50.70	0.841
Settembre	53.54	44.70	0.835
Ottobre	40.14	33.60	0.837
Novembre	25.94	21.40	0.825
Dicembre	19.96	18.90	0.947
Media	46.26	Kc	0.868

Come si vede il coefficiente di riduzione per il 2016 è molto vicino a quello del 2015 (0.880). A proposito del coefficiente Kc ricordo che a partire dal mese di Giugno del 2015 il SILSO ha deciso, prendendo tutti un po' di sorpresa, di modificare le procedure per il calcolo dei numeri di Wolf ridotti, ribattezzati Sn o Sunspot numbers. La novità principale è stata quella di modificare sia l'osservatore di riferimento (da Wolf a Wolfer) che la pilot station. Quest'ultima è sempre la Specola Solare Ticinese di Locarno Monti, ma i dati di Locarno utilizzati per il calcolo degli Sn sono ora quelli ottenuti con il metodo non pesato (si veda a questo proposito il successivo punto 5). Inoltre sempre il SILSO ha ricalcolato tutti i Kc mensili del 2014 e i relativi valori di dispersione. Pertanto il Kc medio annuo del nostro Osservatorio per il 2014 è cambiato da 0.61 a 0.875. Per il 2016 è stato quindi logico calcolare un valore di Kc provvisorio (in attesa di quello ufficiale fornito dal SIDC/SILSO. Per quanto riguarda il Kc relativo al conteggio non pesato, arrotondato alla prima decimale, provvisoriamente stimato, per il 2016 è risultato pari a 1.0 esattamente come per il 2015.

Ciò conferma la bontà e l'attendibilità delle nostre Osservazioni. Anche i nuovi valori di dispersione relativi al 2014 sono molto bassi, mentre per il metodo non pesato il SIDC/SILSO non ha ancora comunicato i Kc, in quanto da troppo poco tempo (Ottobre 2014) è iniziato per noi questo tipo di conteggio. I Kc ufficiali per entrambi i metodi del 2015 non sono al momento ancora stati resi noti dal SIDC/SILSO.

Gli stessi dati della tabella sono riportati in seguito in forma grafica, per i due semestri dell'anno 2016:


Grafico 1.

Andamento dei Numeri di Wolf medi mensili calcolati in Istituto (linea fucsia) confrontati con i valori degli International Sunpots Numbers elaborati dal SIDC/SILSO (linea blu) per il primo semestre del 2016:

Grafico 2.

Andamento dei Numeri di Wolf medi mensili calcolati in Istituto (linea fucsia) confrontati con i valori degli International Sunpots Numbers elaborati dal SIDC/SILSO (linea blu) per il secondo semestre del 2016:

2) Monitoraggio delle Regioni Attive

Durante il 2016, per tutti i giorni dell'anno, sono state seguite le Regioni Attive comparse sul Sole (BMR, Bipolar Magnetic Regions), attraverso i dati forniti dal NOAA (National Oceanic and Atmospheric Administration), i bollettini giornalieri emessi dallo stesso NOAA e le immagini (in varie frequenze dell'UV) inviate dalla sonda SDO. Sono state conteggiate complessivamente 146 BMR (contro le 219 del 2015, a ulteriore riprova della diminuita attività) le quali, quando non presentano più gruppi di macchie loro associati, vengono classificate come H-Alpha Plages, ossia Regioni prive di macchie osservabili principalmente nella riga Hα dell'Idrogeno.

3) Conteggio di eventi energetici

Il flusso dei Raggi X nelle bande tra 0.5Å e 4Å e tra 1Å e 8Å è stato costantemente monitorato grazie ai dati inviati in tempo reale dal satellite GOES, in due finestre temporali, una relativa agli ultimi tre giorni in ordine di tempo (aggiornata automaticamente ogni 5 minuti), l'altra relativa alle ultime 6 ore, aggiornata ogni minuto. L'analisi di questi dati permette di verificare la presenza di eventuali Flare nelle varie classi energetiche in cui sono comunemente suddivisi.

4) Space Weather

In Osservatorio viene prodotto giornalmente (esclusi i giorni festivi) un bollettino consuntivo e previsionale dell'attività di Space Weather (effetti dell'interazione tra la Terra ed il Sole considerati come un unico sistema) elaborando dati satellitari provenienti da diverse stazioni al suolo e spaziali. Il vantaggio di questo lavoro è quello di avere un prodotto riassuntivo, ma esaustivo, dello Space Weather, però in lingua italiana. Tutti i dati presentati sono infatti reperibili anche altrove in rete, ma sparsi su diversi siti e tutti in lingua inglese. Il bollettino viene pubblicato sul sito dell'Istituto (attualmente sul sito Solarspots.net, si veda il precedente punto 1)) nella sezione dell'Osservatorio Solare, dove sono presenti anche alcuni documenti per facilitarne la lettura e la comprensione. I dati necessari sono ricavati da numerosi bollettini previsionali e consuntivi emessi dal SWPC (Space Weather Prediction Center) del NOAA e sottoscritti dall'Istituto, nonché dal continuo controllo giornaliero degli indici di attività geomagnetica, della velocità, densità e pressione del vento solare, del controllo della componente Bz dell' Interplanetary Magnetic Field (IMF), il tutto svolto attraverso la rete Internet. Durante il 2016, non sono stati rilevati eventi energetici di rilievo più marcato rispetto a quelli del 2015. Infatti la tempesta geomagnetica più intensa registrata nel 2016 è stata una G3, come nel 2015, quindi di intensità media e non sono state rilevate nell'intero anno Tempeste di Radiazione, prodotte dai flussi di protoni emessi in seguito ad un flare di potenza medio-alta. La scala NOAA delle tempeste geomagnetiche va da G1 (dette minor storm) a G5 (dette extreme storm). Il descrittore delle tempeste G3 è strong. Dal mese di Dicembre del 2014 è disponibile un software online, detto STAFF, elaborato e distribuito gratuitamente dall'Università del Belgio, con il quale è possibile monitorare lo Space Weather in tempo reale ed ottenere dati utilissimi per stendere un rapporto previsionale autonomo, che non si basi quindi solo su dati elaborati da altri. Questo permette al servizio di Space Weather offerto dal nostro Osservatorio di compiere un notevole salto di qualità, in quanto al suo interno è possibile elaborare direttamente molti dei parametri che concorrono alla previsione dello Space Weather.

5) Collaborazione con il SIDC/SILSO

Dal 15 Settembre 2010 il nostro Osservatorio è stato inserito tra le stazioni operanti e collaboranti con il Solar Influences Data Analysis Center (SIDC) di Bruxelles, cui fanno capo meno di un centinaio di Osservatori sparsi in tutto il mondo. Da Settembre 2013 il SIDC ha istituito un centro di calcolo ed elaborazione dati dedicato alle macchie solari in particolare e all'attività solare in genere, chiamato SILSO (Sunspot Index and Long-term Solar Observations). Ecco perché in precedenza e nel seguito è stato fatto riferimento al centro con sede presso l'Osservatorio Reale del Belgio a Bruxelles come SIDC/SILSO. Il SIDC/SILSO elabora i dati ricevuti per calcolare e pubblicare gli ISSN (International Sunspots Numbers), ossia i Numeri di Wolf ufficiali giornalieri, ora ribattezzati Sn, o Sunspot numbers, come detto in precedenza, raggruppati in bollettini trimestrali. E' noto infatti che l'Astronomo svizzero Rudolph Wolf propose, nel 1859, un metodo di calcolo di un indice dell'attività fotosferica, detto Numero di Wolf relativo, che si ottiene dalla semplice formula:

Rw = Kc(10g+f)

dove g è il numero dei gruppi osservati, f il totale delle macchie conteggiate e Kc è un fattore di correzione dipendente da diversi parametri, tra i quali la qualità dell'osservazione e le caratteristiche dello strumento impiegato. Il numero è detto relativo proprio perché, se non è noto un valore di Kc che lo possa correlare con tutti gli altri, esso dipende unicamente dal conteggio effettuato da un determinato osservatore nelle sue condizioni di osservazione. Wolf, che conteggiava ogni macchia una sola volta e non teneva conto delle macchie molto piccole, la cui visibilità dipende molto dalle condizioni di seeing, non aveva un fattore di riduzione o, se si preferisce, per lui Kc era pari all'unità. Il sistema di conteggio fu poi modificato dai suoi successori (Wolfer, Brunner, Waldmeier, tutti del Politecnico di Zurigo), introducendo nel conteggio anche le macchie più piccole e attribuendo un "peso maggiore" (cioè f>1 per una singola macchia) per le macchie con penombra, in funzione delle loro dimensioni e della struttura dell'ombra. In questo modo Sn assume ovviamente valori più elevati, tanto che da Wolfer e successori il valore di Kc fu posto pari a 0.6 per garantire una continuità oggettiva con le osservazioni dello stesso Wolf. Ed è in sintesi questo che oggi fa il SIDC/SILSO, rapportando tra loro tutti i numeri di Wolf relativi (detti anche grezzi o non ridotti) e soprattutto rapportandoli alle condizioni di osservazione di Wolf. Questo viene fatto attribuendo ad ogni Osservatorio (attenzione, ad ogni Osservatorio e non ad ogni osservatore che possa operare al suo interno) un valore di Kc calcolato allo scopo: non importa se questo valore è maggiore o minore dell'unità (normalmente oscilla tra 0.4 e 1.3) per un dato Osservatorio, ma che rimanga costante nel tempo il più possibile. Un Kc costante è indice di attendibilità per le osservazioni ricevute dal SIDC/SILSO per un certo Osservatorio. La Specola Solare Ticinese di Locarno Monti, nostro partner ufficiale (unitamente all'IRSOL di Locarno) nell'attività di osservazione della fotosfera, da oltre 50 anni possiede un fattore di riduzione (così è chiamato di solito Kc) pari mediamente a 0.61, quindi identico a quello utilizzato da Wolfer e successori. Per questo motivo la Specola di Locarno è la "Pilot Station" per il SIDC/SILSO, ossia i valori delle loro osservazioni fungono da riferimento per tutti gli altri: se in una certa giornata di osservazione il numero di Wolf relativo di un Osservatorio si discosta di ± 15% rispetto a quello di Locarno, per quella giornata il valore inviato non verrà inserito nel conteggio per l'elaborazione dei numeri di Wolf internazionali, quelli che, in altre parole, tenendo conto delle correzioni introdotte con i tutti i Kc dei vari Osservatori, assumono il ruolo di Numeri di Wolf assoluti, detti anche ISSN, come detto sopra. Il nostro Osservatorio ha mosso i suoi primi passi assistito dalla Specola Solare Ticinese, con la quale dopo otto anni di attività ha ormai instaurato un forte legame di collaborazione in molti campi, dall'attività osservativa fino alla didattica ed alla divulgazione scientifica (Studenti del nostro Istituto hanno effettuato Stages e diverse visite a Locarno; quest'anno una Studentessa di 5F ha preparato la propria Tesina per l'Esame di Stato presentando uno Studio spettro polarimetrico del magnetismo solare elaborando misure da lei stessa effettuate con il polarimetro ZIMPOL III dell'IRSOL e con l'aiuto dei ricercatori dell'Istituto Locarnese; il Direttore dell'Osservatorio collabora con la rivista di divulgazione astronomica "Meridiana", edita dalla SAT, Società Astronomica Ticinese, è socio dell'ASST, Associazione Specola Solare Ticinese e membro del Comitato Direttivo della stessa). Pertanto dal mese di Marzo 2010 il nostro Osservatorio ha adottato come metodo di conteggio dei numeri Rw lo stesso proposto dai successori di Wolf e utilizzato ovviamente anche a Locarno. Questo da una parte ci permette di avere un fattore di riduzione molto vicino (di fatto identico) a quello di Locarno e valori degli Rw giornalieri che difficilmente si discostano del ± 15% da quelli della Specola, dall'altra ha portato ad una sensibile diminuzione del Kc rispetto al 2009 (quando da noi non veniva usato). Però, come illustrato in precedenza il fattore di riduzione degli anni successivi si è mantenuto costante e pari a 0.61 (nel 2009 valeva 0.7). Per quanto detto al punto 1) dal Giugno 2015 le cose sono però cambiate, con il passaggio della pilot station sempre a Locarno, ma con i dati non pesati (si veda il punto 5). Per quanto riguarda l'invio dei dati al SIDC/SILSO, per ogni giornata di osservazione vengono indicati il totale dei gruppi e delle macchie osservati, gli stessi distribuiti nei due emisferi del Sole, e quelli che si trovano entro un raggio del disco solare pari ad un quarto del raggio effettivo del Sole (questi ultimi perché potrebbero essere in posizione geoeffettiva, cioè eventuali eventi energetici loro associati in cromosfera o in corona potrebbero dar luogo a fenomeni geomagnetici). Le osservazioni sono compiute in proiezione diretta con un oculare da 40 mm. (offertoci a titolo di prestito indeterminato dalla Specola) su un catadiottrico Maksutov-Cassegrain da 150/1800 in modo da ottenere un disco proiettato di 25 cm. di diametro, che sono le dimensioni standard dei principali Osservatori solari europei (Catania, ROB, Locarno, Kanzelhohe) collaboranti con il SIDC/SILSO. La convenzione con il SIDC/SILSO prevede l'invio di almeno 10 osservazioni al mese per tutti i mesi dell'anno (120 osservazioni), entro le ore 12:00 TU per ogni giorno di osservazione. Finora il nostro Osservatorio ha ampiamente rispettato queste condizioni e certamente lo farà anche in futuro. Questo risultato è stato ottenuto effettuando osservazioni in tutti i giorni (domeniche e festività comprese) in cui il Sole è stato visibile: un notevole impegno, ma anche la condizione indispensabile per il mantenimento di un Kc costante. In conclusione di questo punto, va fatto notare che il SIDC/SILSO ha voluto che gli fossero inviati anche tutti i nostri dati osservativi precedenti al 15 Settembre 2010, cioè per l'intero anno 2009 e dal 1 Gennaio al 14 Settembre 2010. E' stata forse questa buona quantità di dati inviati a consentirci di essere inseriti da subito tra le stazione del network cooperanti per il calcolo degli ISSN, senza essere tenuti sotto osservazione per un periodo preliminare (della durata di una anno circa).

A partire dal mese di Ottobre del 2014 il nostro Osservatorio dispone di un secondo account presso il SIDC/SILSO, utilizzato per l'invio dei numeri di Wolf ottenuti con un metodo di conteggio, detto non pesato, diverso da quello descritto in precedenza ed utilizzato anche alla Specola Solare Ticinese di Locarno. In una serie di Workshops, tenutisi tra il 2012 e il 2014 e dedicati proprio al conteggio delle macchie solari, sia con il numero di Wolf che con altri indici, è emersa l'esigenza, da parte della comunità dei fisici solari, di procedere ad un riesame delle osservazioni compiute nel passato con tutti i diversi metodi di calcolo, per cercare di stabilire quale sia il più attendibile per descrivere l'andamento dei cicli solari, passati e futuri. Poiché l'Osservatorio di Bisuschio è l'unico, insieme a Locarno, tra quelli del network ad utilizzare il metodo pesato, ci è stato chiesto di procedere ad un conteggio anche non pesato (cosa che viene fatta anche a Locarno), in modo che il SIDC/SILSO possa disporre di un secondo set di dati, oltre a quello fornito da Locarno, per poter, nel corso del tempo, procedere ad un confronto tra i due metodi nell'ottica di quanto descritto sopra. Quindi Locarno e Bisuschio sono gli unici due Osservatori a possedere due account presso il network di Brucelles. Questo pone senza dubbio il nostro Osservatorio in una posizione significativa nell'ottica di collaborazione ad una ricerca scientifica di alto livello, alla quale partecipano i centri di osservazione e di studio della fisica solare più importanti del mondo. Nel precedente punto 1) è stato illustrato il primo risultato di questa ricerca, cioè la modifica delle procedure di calcolo per i numeri Sn. Ad ogni modo l'Osservatorio di Bisuschio, così come la Specola, continua con il doppio conteggio, pesato e non pesato ed invia entrambi i set di dati a Bruxelles in ogni giorno di osservazione.

6) Osservazione Ha

Parallelamente all'attività fin qui descritta, è continuata anche per il 2016 l'osservazione delle protuberanze solari in cromosfera nella frequenza di 6563Å della riga α della serie di Balmer dell'Idrogeno. Purtroppo la mancanza di tempo ed alcuni problemi organizzativi non hanno permesso di condurre questa attività in modo regolare e sistematico come le altre. Sono stati infatti realizzati pochi disegni in tutto l'anno, tutti compiuti dai gruppi di osservazione delle classi quarte e quinte del Liceo Scientifico inseriti nel Progetto Astro.Net. Attualmente l'attività di osservazione in Hα è affidata esclusivamente (nel senso che il Direttore dell'Osservatorio, di norma, non compie osservazioni in Ha ma queste sono state delegate interamente agli Studenti) ancora alle quarte e quinte del Liceo Scientifico, ma il tempo limitato messo a disposizione di questi gruppi per le osservazioni (al massimo quattro al mese se le condizioni meteo sono favorevoli) non permetterà certo di produrre un numero significativo di disegni, che comunque sono considerati osservazioni ufficiali per l'Osservatorio. Per tale motivo in questo rapporto non vengono presentati, come del resto in quelli del 2011, del 2012, del 2013 e del 2014 i risultati delle osservazioni in luce monocromatica, diversamente da quelli relativi al 2009 e al 2010, quando l'osservazione in Hα era praticamente sistematica, mentre il Sole stava attraversando il suo lunghissimo periodo di minimo prolungato a cavallo dei cicli 23 e 24, quindi si aveva il tempo di procedere ad entrambe le osservazioni, in luce bianca e in monocromatico. La successiva risalita verso il massimo ha posto poi inevitabilmente problemi di tempo, in quanto era quasi impossibile, per un solo osservatore, procedere ad entrambe le osservazioni. Ecco il motivo per cui da un certo punto l'osservazione in Hα è stata delegata ai soli Studenti dei gruppi di osservazione. Tutte le osservazioni sono state compiute con un PST Coronado da 40/400 utilizzando oculari da 10 mm. per la ricognizione del bordo disco e da 6 mm. per l'osservazione dei dettagli fini. I due oculari forniscono ingrandimenti rispettivamente di 40X e 67X. Per ogni osservazione è stato realizzato un disegno con i nuclei e gli elementi delle protuberanze osservate (classificate con gli opportuni metodi) ed il calcolo di un indice di attività, detto Numero di Pettis (o Prominence Number Rp), equivalente del Numero di Wolf per le macchie solari, ottenuto con una formula di calcolo molto simile, anche se coinvolgente parametri diversi.

6) Misura della costante solare al suolo

A partire da Settembre 2015 è iniziato, nelle giornate favorevoli, un monitoraggio sinottico della costante solare, misurata al suolo con un apposito strumento rilevatore, che è continuato per tutto il 2016. Lo scopo è quello di determinarne il valore medio annuale (circa 640 W/m²) e le sue variazioni durante un ciclo di attività. Ovviamente queste misure dovranno essere protratte per molto tempo, ed i primi risultati significativi si avranno nei prossimi due - tre anni.

Bisuschio, 12 Gennaio 2017

Il Direttore dell'Osservatorio (Mario Gatti)